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A characterization of the best Lcapproximation to a continuous function by
classes of fixed-knot polynomial splines which satisfy generalized convexity
constraints is presented and uniqueness is shown. Included is the possibility of
specifying the po~itivity, monotonicity, or convexity of the class. The proof of
uniqueness uses recently developed results for Hermite-Birkhoff interpolation by
splines.

biTRODucnO:-J

The concept of monotone approximation by polynomials was introduced
by Shisha [13], and has been further studied by many authors. Lorentz [5]
demonstrated uniqueness, in general, for best approximation by monotone
polynomials in the uniform and Lcnorm. Roulier and Taylor [10] generalized
this monotonicity constraint to include more general restrictions on the
range of derivatives. An excellent survey to this and subsequent work
concerning uniform approximation with constraints can be found in Chalmers
and Taylor [3]. If all the restrictions on derivatives are nonnegativity or
nonpositivity. we will call them generalized convexity constraints.

Classe~ of polynomial splines with fixed knots satisfying generalized
convexity constraints and other inequality-type constraints were introduced
and studied in the author's thesis [7]. with some of the results appearing
in [8]. Best uniform approximations were characterized and partial uniqueness
was established. This paper continues the study of such constrained splines
by considering the Lcnorm. A characterization is given which is a special
case of a more general result found in Rozema and Smith [Il]. Further
uniqueness is established, too.
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Uniqueness for best LI-approximation by certain unconstrained ~pline~

with lixed knots ha~ previously been demonstrated by Carroll and Braess [2]
and Galkin [4]. Thus we generalize their results by allowing constraints.
Pinkus [9] has considered best one-sided L I-approximation by splines to a
differentiable function. We indicate in the last section how the methmb of
this paper can be used to handle one-sided approximation as Ilell a~ more
general restrictions on the range of derivatives. Only the somewhat simpler
case of generalized convexity constraints is presented in detail.

We will use results for Hennite-Birkhoff interpolation by splines II hich
were developed by the author [7. 8]. For completeness the required theory is
briefly reviewed in the following section together with certain rather technical
interpolation lemmas which are needed.

I. HERMlTE-BIRKHOFF INTERPOLATIO:-' BY SPU"ES

Suppose - -:£ <: a . ~11 < ~1 .< ... < ~q < ~q""l cc:. b < x and integers
R, with °< R, ':, m. v = I, ... , q, are given. Let .'/'/"= '1';,"'([ ~,.:': ; : R"j{)
denote the space of polynomial spline functions of order 111 with tixed knots
:~,:i, each with multiplicity R,. respectively. where p c '2.:' I R". Thus
g E .'1',,'" is piecewise a polynomial of degree at most m - I with gill dis
continuous only at a knot ~" where i >: 111 - R" . We adopt the convention that
all elements of Y',,'" and all derivatives of elements of .'1',,'" are defined every
where by assuming continuity from the right. Notice that dim V;:" - m - p.

We review needed facts about Hermite-Birkhoff interpolation (HBI) by
polynomial splines.

Let interpolation points

be given. A matrix

( 1.1 )

i = I,.... k; .i = 0,1,... ,111 - I ( 1.2)

is called a .\p/ine incidence matrix for X and .'/'pnl provided eu ,0. I. or :2
and eij = -lor :2 only if Xi = ~, for some v and.i ~ m - R" . The HBI
problem defined by (E, X, .'1',,"') is:

Given any values {y,,: eij = I or 2} and {yiJ: e i ; = ~ I or 2}, find g E'I',,'" with

whenever

whenever

I or 2,

-lor 2.

( 1.3)

( 1..1)

As in (7, 8], when we display such a matrix E, we indicate the relationship
between the interpolation points X and the knots of the spline space '/',:'. by
drawing the following lines:
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(i) If Xi < gy < X i,l' we draw a solid line between the ith and
(i ~ l)th rows extending from the (m - RJth column to the (m - l)th
column. If more than one knot lies between xiand Xi-I' then draw several lines.

(ii) If Xi = gy, we enclose in a box the entries in the ith row from the
(m - R,)th column to the (m - I)th column.

Thus an entry of E may be -lor 2 only if it is boxed.
Define

i E:, = L i eij .
i,j

(1.5)

We say (E, X, /1'::') is full when ;, Eli = dim ~,'" = III ~ p. If (E, X, Y J

p "')

has a unique solution for any given data values or, equivalently, if the only
solution to the homogeneous problem is the zero spline, the problem is called
poised. Obviously (E, X, ~",) must be full for this to happen. When il E ': ~
m -L p, we say (E, X, Y P''') is quasi-poised if the dimension of the solution
space for the homogeneous problem is exactly m --i- p - IE,.

We now define what are essentially submatrices of E. For n = 0, 1, ....
1Il - I and 0 ~ 1 < .I' ~ q --i-- I, let k1 = min{i: gl ~ Xi}' k 2 = max{i: Xi ~ tJ,
and

where

£(n: I, .1') = {e~}, i = k 1 , .••• k 2 ; .i = n, ... , 111 - 1, (1.6)

e,~= I,

== e,i'

-= I,

= O.

if i = k 1 , Xi = gl' and eij = I or 2,

if Xi E (tl' ts) or if i = k 2 , Xi = ts, andj < 111 - Rs'
if i = k 2 , Xi = t s , and eij = -lor 2,

otherwise. (1.7)

By a simple dimension argument, it is easy to see that the following, called
the local Polya conditions (LPC) for (E, X . .9';,'''), are necessary for quasi
poisedness:

, £(n: I, .1'): ~ 111 - n -L pen: I, .1'),

where

forall n=O.I ..... IIl-I; (1.8)

o <: I < .I' ~.; q ~ I,

~-l

pen: I• .1') = I min[Ry , III - n]. if I- I < S.
v=l+l

= 0, if 1-"- 1
(1.9)

=, s.

It is also easily verified that all of the LPC are satisfied if we have that

!' E(n: I, s)i; ~ 111 - n --i-- pen: I, s),

for all {en, I, s): Ry < m - II, when I < If < .1'::. (1.10)
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In particular \\ hen (E. Y.I" ") is full, the LPC imply that

£ E(O: I. q ~ I)
{

I R,.
, -I

I. I. .... II. ( I. I I )

LE\!\IA I. I. If £(0: I. .1') m-- p(O: I, .I) for some 0 <: I . q - I
or 0 <: I < .I < q I. then (E. X. .'1',,"') can be split vertica/~1' into two or
three HBI problems. cach defined on a spline space of order still m but \1'ith
fewer knots than -''':''. The "centrar one of the decomposed problems has
incidence matrix E(O: I. .1').

LEMMA 1.2. If Xi = t,.for some i and ~'. and eiJ = I for all} ~- O. I. ....
m - R,. - I, or if R,. = m for some v, then (E, }(, .'1;,''') can also be split
certically into two HBI problems considering fewer knots. E(O: 0, ~,} and
E(O: v, q .L I) will be the incidence matrices for these two smaller
problems.

We further note that the above decompositions preserve the LPC and that
if the original problem has a full matrix, then so do all of the smaller problems.
Quasi-poisedness of (E. X, ,'1;/") is equi\alent to quasi-poisedness of all of
the split problems. Similar decompositions have been noted by several
authors. see [6]. for example. The complete details are tedious but nor hard
and can be found in [7].

Let (E. X. (i;:") indicate a given HBI problem. If X J E:r::~. then we say
that we ha\e a regular sequence beginning with eiJ of order ,u when c',.

e,.;~1 == ... = e,.J .. -1 c= I with ei,j_1 = 0 and ei.h, = 0 if either is defined.
Also if Xi = f., then we say that we have a regular sequence beginning with
eij of order fL when e;; = ei''>_'1 = ... -c. ei.j_,,~1 = I with) - fL . 11/ g .
C,.)_I = 0 and C,." .,- ~ 0 if either is defined. Further a regular sequence
eij ,.... e" ;~,,~I is called strongly regular if e"jc-u is defined, zero. and. in the
case where Xi = f .j --:- fL < Ii1 - R, . A sequence is eren if it has even order
and odd otherwise.

We say that a regular sequence e" ..... e',;~"_1 is supported prO\ided there
ex.ist integers il • il . i 2 • i~ with il < i <: i~ • e", ] ~ I or 2.

and

II .-. min[j. >11 .- R,.: x,] < g, '. .\j]. ( 1.12)

(1. 13)

I.

-lor 2.

if Xi. ¢: {g,1~ .

if Xi, = g,. andj~ < IIi - R,..

if X'2 = ~,. and j~ ;. III - R, .

(1.l4)
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The problem (E, X, Y p "') is called weakly conserratire (C) if every supported
strongly regular sequence is even.

THEOREM 1.1. Suppose (E, X, ~/,,) satisfies the LPC and C. Then it is
quasi-poised.

This theorem generalizes the sufficiency theorem of Atkinson and Sharma
for HBI by polynomials [1]. The proof can be found in [7,8].

We shall need the following technical lemmas. All three lemmas concern
attempts to add conditions of some sort to a given HBI problem.

LEMMA 1.3. Suppose (E, X, Y;,m) satisfies the LPC but when some strongly
regular sequence in E is extended to have an additional one to the right giving
the matrix E, then the LPC are riolated. There exists f f/:: {S=,.Ji u X so that when
g is added as a simple knot to the spline space, then (E, X, Y?;'+l({gJi , f;
{R,,]i , I) satisfies the LPC.

Proof Suppose ei,j_" = ... = ei.j~l = 1 is the strongly regular sequence
of E and that eij is changed from a zero to a one to obtain E. Then there
exists 7J ~.i and 0 ~ I < s ~ q ~ I with x, E [fl , f,] so that for ~)m,

I E(7J: I, sr = ' E(7J: I, S)I; --L I

= m - Yj - p(7J: I. s) _L I. ( US)

Without loss of generality assume that (1.15) cannot happen first for any
ij > 7) and secondly with Yj for any i and s with [fi, f,] ~ [gl , gJ.

Let

E = min[(xi - Xi~l)' (Xi+! - X.), {' x, - f,,: f, 7'= xiJ]. (I.I 6)

We choose f E (x, - E, Xi --, EL:x;) in such a way that when f is added to the
knot set, i.e., {DiH = rg,Ji u:g} properly ordered. f = gr, R[ = I, and
I < i < S --L I, we have

( 1.17)
and

(1.18)

with respect to Y;~lCs=~n'-\ {R:,~iH).

It is easily seen that this can be done. The proof is completed by checking
the various ways E might violate the LPC with respect to the new spline space.
If this happens, then (E, X, .~/") must violate the LPC, contrary to hypothesis.

A condition corresponding to ei.O = I is called a Lagrange condition and
we say that we are adding a Lagrange condition at t to an HBI problem
(E, X, Y p"') if a zero in the j = 0 column is changed to a one, possibly by
adding a new row to E if t tf: X.
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LE\I\IA 1.4. Suppose (E. X. .'1';,"') satisfies the LPC but is not [ull. Then
there exists a point t r= Y u :f.:i. where a Lagrange condition can be added to
(E. Y. .'/:,"') without ciolating the LPC.

Proof If E(O: I. s) -~ 111 - - p(O: I, .Il for some 0 < I <: s < q -- I or
o :" I <' S <: q - I. then we can decompose according to Lemma 1.1 and
consider one of the split problems which is not full. Thus without loss of
generality \ve assume this never happens. But then any Lagrange condition
can be added without violating the LPC.

LBIMA 1.5. Assume that (E. X, c~:/I) satisfies the LPC but i~ not jii/I.
rVithout loss of generality, assume that [:LJi u;bJ] C X, possibly by hacing
some rows with all ::ero entries in £. Then we can "jill" £ in such a way that the
LPC remain calid by

(i) changing sOllie "boxed" ::eros to minus ones,

(ii) changing sOllie "'boxed" ones to twos, and/or

(iii) changing some ::erol to ones in the last row corresponding to b.

Proof Inductively for I ...~ I. 2..... q we make changes of type (i) or (ii)
for "boxed" entries corresponding to the interpolation point and knot f .. so
that ( 1.11) will be valid for that integer after the changes are made. Further
we make changes one at a time for entries with i-index as large as possible
without violating the LPC. To show that this is al\\ays possible. suppose
we have done this for I .~ I. 2..... /.. - I (if any) and ha\'e

,£ - £(0: I. q -;- I)

Suppose Xi. = fl • . If

I R,.
1'= I

1= 1.2. .... /, -- I. ( 1.19)

E £(0: I . . q- 1) I R,o.
~=I

( 1.20)

then~there is no need to make any changes in the i *th roll. If £'i •. ,

for alIi = 111 - R ,. ..... III ~ 1. then (1.20) holds. Suppose
-lor 2

ei,J. =·,0 or I. where (1.21 l

ei.; = -lor 2 for all j = (111 - Rl.), .... jx - I (if any). (1.22)

but ei •• ;, cannot be changed to ~ I or 2. respectively, without violating the
LPC. By (1.10), there exist integers i). i, and s with i <: Ix ~ s. i) ~ j •.
R" <: m - 7j forlall i <: 1I <: s (if any), and

E(7j: i,5), = III - 7j + p(7j: i.1). ( 1.23)



CONSTRAINED APPROXI\IATION BY SPLINES

Then

!i Ell - ,! E(O: I"" q + 1)1

? (II E,' - Ii E(O: i, q - l)ll) T I, E(fj: i,.f)1

i ,E(fj:/x,shiflx<s t, [0- R]
- \ [0 R -]'f 1 -I - max , 71 - 11/ T I.{max ,11/- 1,-71,1 x=Sl

339

/.

? L R,.
l:=l

( 1.24)

Again (1.20) holds. Thus we can always accomplish the induction step.
If the matrix is still not full after all of these changes, then we make

changes of type (iii) at entries with .i-index as large as possible without
violating the LPC. We argue in a similar manner that if it is not possible to
change some such entry, then it is unnecessary to do so.

EXA \IPLE 1.1.

0 0 0 0 @]

0 010 2 1 I
E= 0 01 0 0 (0

0 0 0

0 0 0 0 0

becomes via the procedure given for Lemma 1.5

0 0 0 oB
0 01-1 2 =:JJ

E= 0 01-1 o =:Q]
0 0 0

0 0

The display E is quasipoised and E is poised by Theorem 1.1.

2. BEST LcApPROXIMATlON BY SPLI:\ES WITH GDiERALIZED CO:-;VEXITY

CO"-:STRAINTS

Let integers 0 ~ko <k1 < ... <k,c ~11/~ I and E,' = =1. L' =0,
1'00" w be given. Suppose 9';,m C C[a, b], i.e., R, < 111, v = I. ... , q and m > I.
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Define

OE'-:"IS D. PENCE

i' h.c=O.I ..... H·:. (2. I)

Recall we assume right continuity of all spline derivatives. Also for every
g E G we have

if k, ::; 111 - R.. (2.2)

For an integrable function h. let hI = I~ .h(t). dt. Suppose f is in
Cfa, b], the space of continuous functions defined on [a. b], but is not in G.

Then a best Lcapproximation to f from G is a spline g x E G such that

(2.3)

Denote by Pdf) the collection of all such best approximations. Pdf) =.

because G is closed, convex, and finite dimensional. We have the following
characterization theorem.

THEOREM 2.1. AsslIme fE Cfa. b] and G is defined as in (2.1). Then there
exist

(i) functions rrI ,.... '(" I' I where rr;(t) C~ 1 for almo.\t ('eery
t E [a, b], i =- I. ... , r.

(ii) an HBI problem (E. X ..Y;,"'), E - 1'- m - p - L ~I'here

e,i = 0 only ifj = k,.for some c.

(iii) positive scalars Al ..... ,\,. • and

(iv) scalars :fLii; and!fL'0;for i = I..... k andj -~ O. L... , m - L where
fL,; = 0 if e i , = I or 2 and f-Lij ~ 0 if eij ~= -I or 2 alld where sgn f-L;; =,

sgn f-Lij = -sgn E, ifJ = k, with

, .h

I Ai I 'FlU) ljJU) dt - I fLijljJ(j)(X;)
i=l '" t1

for alf ljJ E Yo'''. (2.4)

such that g EGis in Pc,{f) if and only if

.bI r;(t)[g(t) - fU)] dt = g - (;II ,
• n

i = 1, ... ,1', (2.5)

and

g(j)(x i) = 0, Il'henecer

H'henerer

eij = 1 or 2,

e. =-101'2.
I)

(2.6)

(2.7)
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Proof This theorem is a special case of a theorem of Rozema and Smith
[II, Theorem 4.1] once we note that it is easy to find a polynomial 1/J E .9'pm

satisfying

a ~ t ~ b; l' = 0, I, ... , II'. (2.8)

LEMMA 2.1. If fE C[a, b], gl and g2 are elements of PeU), and go ~~

Hgl ,- g2), then gl - g2 ranishes at the zeros ofgo - f

This well-known lemma can be found in [2] and is a special case of
[I I, Lemma 6.1]. In particular, Theorem 2.1 and Lemma 2.1 characterize
best Lcapproximation by continuous unconstrained splines with fixed knots,
i.e., when G = .9'1'm. In order to make the proof of Theorem 2.3 below more
transparent, we use the same technique to prove uniqueness in the un
constrained case. This proof is quite different from those in [2.4] where a
similar result is established.

THEOREM 2.2. For every fE C[a, b], there is a unique best L1-approxi
mation from Y;,'" , the linear Space of polynomial splines with fixed knots ~v

each with 1/lultiplicities R,. , If ,= I, ... , q. respectively, where L~~l R, = p.

Proof Existence follows from standard arguments since .'7'1'm is closed,
convex, and finite dimensional. We enumerate the steps in the proof of
uniqueness for easy reference and comparison in the subsequent proof.

Step I. Let f{'l ,... , q:r and AI"'" A,. be as guaranteed by Theorem 2.1.
No HBf problem and no scalars {fLiJ and {fLii} are needed because there are
no constraints.

Step 2. Suppose gl and g2 are both best Lcapproximations to f from
'</;,"'. Then so is go = H gl - gJ. Considering (2.5) for go _ we see that for
almost every t with go(t) ="' jet) we must have

fFi(t) = sgn[go(t) - jet)], i = I, ... , r. (2.9)

Let (]J be the right continuous function defined by

(]J(t) = lim sgn [goU T E) - j(t + E)].
<,0

(2.10)

Define T to be the closure of the set of all points where (]J is either zero or
changes sign. Thus go(t) = jet) for every t E T (and possibly at other isolated
points where go - f does not change sign).

Step 3. Do nothing here since there are no constraints.
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Slep 4. Choose a maxima! subset {I[ : l~ .•. < t,: from" with the
property that Lagrange interpolation at these points is quasi-poised. Thi~

property is equivalent [0 asking that point evaluations at the~c points be
linearly independent functionals in the dual of .'/;.'" or that some extension
of this set satisfies the Schoenberg-Whitney interlacing condition. Let
(E[ . Xl . .'/,,''') denote this Lagrange interpolation problem.

Step 5. We claim that \ c= £[; Co. IJI ~- fl. If not, then there exists a
point t.< E [a, b] which is not one of the points t[ ..... I, nor one of the knots
~[ , •••• ~q \\ith the property that a Lagrange condition at t" may be added
to (£] , XI .V;,"') and the resulting interpolation problem is still quasi-poised.
This is a simple application of Lemma 1.4. This point t.< cannot be from T
because I[ •...• t, was a maximal subset of T with this property. Let
(£2 , X~ . .V;,"') denote (E]. X[ . .V:,u') with this Lagrange condition at t.

added.

Now we use (£~ . .r~ . .Y;,"') to construct a spline tf;, E'';::'' having sign
structure similar to ep and contradicting (2.4). If :l. -" I IJI·· p. this can
be done immediately. When::\. -r- I < IJI- p, the typical technique in spline
proofs of this type would be to construct t/J x with lower knot multiplicities
or fewer knots (possibly even no knots at all if ); - " m). Since this
technique does not generalize easily to the constrained case. we use the
following alternative.

Without loss of generality. assume that the points ~[ ,.... ~". and bare
included in the set of nodes X~, possibly by introducing zero rows in the
incidence matrix £2' Inductively for ! = I. 2, .... q. make the following
changes in the incidence matrix. If x" = ~, and

I .. rt' 1 I.

I R,. - y), (2.11 )
i=l /=0 1,=1

where 1) >0, change ei.,m--,,' e'.m-wl. ... ' and (',.,,,, _[ from zero to minus one.
If Y) -; 0. make no changes and continue to the next integer I. After these
inductive changes have been made, if

k '1"-1

I I e" "~II/- p - Y).
i=1 1=11

(2.12)

with Y) > 0, where xl. =c b, change e;e.m-n , £'k,m-',-l .... , and (" .. ,n- 1 from zero
to one. This procedure is exactly the one described in Lemma 1.5 where the
proof is given that it is always possible to do so, Denote the resulting full
HBI problem thus defined by (E. X. _'1';,'"). This problem is poised by
Theorem 1.1.
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There exists a unique lj;* E Y;,'" with

343

t{;~)(.Xi) = 0,

t{;~)(.Xi-) = O.

whenever

whenever

eo = I or 2 and ,Xi oF 1*, (2.13)

eo = -lor 2.

Note that the changes made by using Lemma 1.5 above effectively lowered
the degree of t{; * on some knot intervals. (2.13) explicitly requires that
lj;*(t,) = 0 for i c= I, ... , ,.x. If t E r,ft1 , ... , t,], then the reason t could not be
added originally to {t1 ,.... ta) must be that t is in some [~l . ~J where equality
occurred in the local Polya condition indexed by (0: I, s) for (E1 ' Xl' .9"p"'),
hence for (E, X. Y;:"). Further since £1 is already "full" on [~I' fJ then
t" $ [~I . fJ. Decomposing (E, X, [/',,"') using Lemma 1.1 yields a split
poised problem on [~l , fJ with only zero data values from (2.13). Thus t{;x
is identically zero on [~I , ~J and lj;*(t) = 0 for all t E T.

Similarly. if E(O: I, s),i = m --:- p(O: I, s) for some 0 :S;: I < s :S;: q - 1
where t x E [~l , ~J, then the problem decomposes according to Lemma 1.1.
Examining the part of (2.13) which each split problem must satisfy. we
conclude that t{;At) = 0 for all t E [a, fJ if f, < t .. or lj;*(t) = 0 for all
tE [~l ,b] if t< < fl' If ,Xi = ~" = t x and eo = I for all i = 0, I, ... ,
m - R, - I, then (E, X, g;,"') can be decomposed according to Lemma 1.2.
As above, the split problem not involving t * will be homogeneous so that lj;x
will be identically zero either for all t < ox, or for all t >- .x;, but not both.

Suppose lj;*(t) = 0 for all t E [flo' fsJ For some 0 ,,;;: 10 < '\0 ::;; q ...L I.
t x S [flo' f,J Let (E*, X, .'17

,/") denote (E, X, -9';,m) with the Lagrange
condition at t * deleted. Let to be any point from (~Io' fool but not in X.
A Lagrange condition at to cannot be added to (£*, X, y:;,"') without violating
the lPC. If it could be, it would give a full poised HBI problem for which
the nontrivial lj; < satisfies all zero data values, which is impossible. Thus
there exist integers 0 ~ I < s ~ q -,- I with ~l oS; to s; ;, , t ~ E [~I , f J and
I £*(0: I, s),: = III T p(O: I, s), hence ;' £(0: I. s)j = m --:- p(O: I, s). As before,
t{;, is identically zero either on [a, f,o] if f '0 < t", or on [flo' b] if t x < tlo .

\\'e conclude that lj; x must be identically zero except on some knot interval
[fl.. Ll containing t* (possibly [a, b]). On this interval there are only a
finite number of points from T (all of which are included in X) and only a
finite number of points where t{; '" is zero. Any sequence of E beginning with
ei .O for which ~I. < ,Xi < f" and .x; T t * is strongly regular. Further, if
o ': ! <:: S '.';: q -- I and (~l , fJ n (~I. , f,.) = ;0,.

, £*(0: I, s)" < In --:- p(O: I, s). (2.14)

Suppose t{;* changes sign at some to E (~I. , ~•.), where rp does not change
sign. First to == t .. because t{;* is continuous and t{;x(t*) * O. Further to rF T
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because. at the isolated points from T in (t,.. t ..). the right continuous
function cP must change sign. By construction. if 2,.u= I, then either 50', ~ T
or .x,- b. Thus a Lagrange condition at to can be added to (E*. X.';:,"'),
giving a HBr problem which will be full aJ:d poised by Theorem 1.1 and
(2.14) together with the properties of (EX. X, ._'1;,"'), But the nontrivial ,fl.
satisfies this problem \\'ith all zero data values. which is impossible, Thus IfI .

cannot change sign when cP does not.
The right continuous function cP changes sign exactly at the isolated points

from T which lie in (~l • . t,,). Any such point x, E T (~I. , t.,) belongs to X,
and the corresponding entry C'.fI ~c I so that I,b jx,) = O. Suppose that ¢I,.
does not change sign at this x, . By construction, "'i.O begins an odd sequence
I = C,.II (' ... 1 ~ ... ~~ ('i./I • where ('''.11-.1 = 0 and is not "boxed." l/J~ must
have an even zero at x, so as to not change sign so that ';/"-1'(.\",) -~ O.
Changing C'."-l from zero to one in (E*, X. .'1;,,,,) gives a HBr problem which
will be full and poised by Theorem 1.1 and (2.14). Again the nontrivial l/J<
satisfies this homogeneous problem giving a contradiction.

We conclude that sgn if; At) = CP(t) at all points t where III.A t) = O.
Therefore

.b .b

I q;;(t) if;x(t) dt = I I if;",(t)i dt ::> 0,
.. a '" a

i·= I, .... r. (2.15)

This with (2.13) shows that if;x is a spline from .~/,' which contradicts (2.4).
Thus our claim at the beginning of Step 5 must be true.

Step 6. Then (El , Xl , Y;,".) is a poised HBr problem. By the con
struction of T in Step 2 and Lemma 2.1, gl - g2 vanishes at every t E T.
hence gl - g2 satisfies all zero data for (E1 , Xl , .9"pm). Thus by the uniqueness
of poised HBr, gl = g2' Since gl and g2 were two arbitrary best approxi
mations, the proof of uniqueness is now complete.

We now turn to best Lcapproximation from G, the set of splines satisfying
certain generalized convexity constraints. Only significant differences between
the proof that follows and the previous unconstrained proof will be explained
in great detail.

THEOREM 2.3. For erery! E C[a, b], there is a unique best Lcapproximation
from G defined as in (2.1).

Proof Existence again follows from standard arguments.

Step I. Let CPl ,... , q;r, AI,... , Ar , (E, X, .~)m), {fLd, and {fLii} be as
guaranteed by Theorem 2.1. Without loss of generality we may assume that
(E, X, .5I'pm) is quasi-poised because any dependency in these conditions could
be used to accomplish (2.4), (2.6), and (2.7) with a smaller HBr problem
made up of independent conditions.
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Step 2. This step is exactly the same as in the proof of the previous
Theorem. Namely, if gl and g2 are both in PG(f), then so is go = !( gl + gJ.
([) and T are defined as before.

Step 3. Suppose g E Pdf). If eij = I, then j = k L• for some z; and
gUJ(x;) = 0 by (2.6). By the definition of G in (2.1), gUJ does not change sign.
Using the zero counting procedure for splines devised by Schumaker [12]
(see also [7,8]), this must mean that Xi is in some interval (possibly the point
alone) where g(j) is identically zero and that this interval is either an even
zero for g(j) or it contains one of the endpoints a or b. Thus if a < Xi < b,
j < m - I, eij = I, and ei,i-.l is not "boxed:' i.e., no spline in Y"p>n may have
a discontinuity in its (j --, I)-derivative at Xi , then

g(j-lI(X;) = o. (2.16)

One by one, change "unboxed" zeros to ones in E to assure that there are
no odd strongly regular sequences in rows for which a < Xi < b and, if
the sequence begins with ei.O = I, for which Xi ¢: T. If Xi E T and ei,O = I,
we leave the order one sequence odd. By (2.16), any g E Pdf) will be zero
for any such added condition. If it is necessary to preserve the LPC, a simple
knot, not already an interpolation point in X, is added to the spline space as
described in Lemma 1.3 when a change is made in E.

Let (E, X, 9'/') denote the resulting HBT problem. which will be quasi
poised by Theorem 1.1, where ~,'" ~ 9"u lll and p ~ p because of the possible
addition of simple knots. Now (2.4) may not hold for the space 9"plll. However,
it can be shown using elementary linear algebra that the linear dependencies
of conditions requiring the addition of simple knots (i.e., the violation of
the LPC) together with (2.4) imply that there exist scalars [,Iii} and {,Iii]
having no particular sign convention, with ,Iij = 0 if ei, = I or 2 and
flij = 0 if eij =1= -1 or 2, such that

r b

I Ai f gJ;(t) if;(t) dt ~ I ,Iijif;(j)(x;)
i=l a i,j

+ L ,L;iiif;(j)(xi-) = 0 for all if; E 9"/".
i,j

(2.17)

For any g E PG(f) C ~Jm C //'/" (in particular for gl and g2) and j > 0,

and

whenever

whenever

eij = I or 2,

e
ij

= -I or 2.

(2.18)

(2.19)

Step 4. Choose a maximal subset {tl < (2 < ... < ta) from
T\{Xi: ei.O = I} with the property that Lagrange interpolation conditions at
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r l , .... r, can be added to (E. X. Iv''') giving (£1' '\1' .'Ip''') \\ithout violating
the LPC. Thi~ new (EI • Xl' .'j~''') still satisfies C because (E. X. Vp"') did by
construction in Step 3. so by Theorem 1.1 both will be quasi-poised.

Srep 5. \\'e claim that ,t:1 III p. If not, then we arrive at LI

contradiction by constructing JJ .. c Yfi'" which violates (2.17) in a manner
almost identical to the wayan element of '/',:" was comtructed in the corre
sponding step of the previous proof which violated (2.4). One slight difference
is that the application of Lemma 1.5 will be somewhat more complicated than
(2.11) and (2.12) because £1 may now have nonzero entries in the.i ~ 0
columns. The conclusion is the same after the application, however.

Also the examination of the sign-changing properties may be somewhat
more complicated but the conclusion will remain valid because of the
construction of E in Step 3.

Srep 6. Then (EI , Xl . .'/jj''') IS a poised H 81 problem for which
gi - g2 satisfies zero data by (2.18). (2.19), and Lemma 2.1 together with the
fact that for every t E T. glJ(t) = f(t). Thus gI = g2 and the proof of the
theorem is complete.

3. MO,\OTO"ICITY A'\D CO,\\TXITY

Definition (2.1) for G in the previous section is a natural generalization
to splines of the notion of monotone polynomials introduced by Shisha [13]
(see also [5]). Included is the possibility for requiring nonnegativity or non
positivity by choosing 1-;0 = O. Since we made the assumption that all of the
elements of our spline space Y,,'" were continuous. choosing some I-; r = I
requires the usual monotonicities. either nondecreasing or nonincreasing.

If R,. < m ~ I. I' .c I. .... q. then some I-; r = 2 implies that all of the
elements of G are either convex or concave. However it is reasonable to ask
for convexity or concavity even if some of the knots have multiplicity 111 - I.
Convexity is well defined (although not in terms of the second derivative)
for linear splines. i.e.. continuous piecewise linear functions, for example.
Similarly monotonicity is well defined for discontinuous spline~.

We briefly indicate how the preceding section would need to be modified
to include the requirement of convexity when R,. = III --- I for some of
[. = I ..... q. We ask that

and

,p'2'(t) -, O. a ". t " b.

whenever R,. = III - 1.

(3.1 )

(3.:n
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The conditions in (3.2) are also linear constraints on .Y'p"'. It is not difficult
to show that there exists a spline in .,/;,11I which satisfies all of the constraints
including these strictly so that the theorem of Rozema and Smith
[I I. Theorem 4.1] applies.

If none of the constraints of type (3.2) are chosen by the theorem of
Rozema and Smith, then we proceed exactly as in the previous section.
On the other hand if one of these "jump" constraints is active and is chosen,
that implies that for g EO Pdf),

(3.3)

i.e., the knot tv is really only of multiplicity m - 2 for all splines in Pc(f). It is
easy to show that Pc(f) C pCnY"'.(f). where Y';. is .~:" with the knots
chosen in (3.3) having multiplicity only m - 2 so that p' < p. In fact the
above inclusion is an equality and pcn//,"'.(f) can be characterized using the
arguments of the previous section. In p~rticular we can still conclude that
uniqueness holds.

4. FURTHER EXTE,,-,SIOl'S

With only minor modifications the work of this paper can be extended to
the problem of finding a best global Lcapproximation to a compact (in
LI[a, b]) set of continuous functions F from G as defined in (2. I). Such best
global approximations are also called restricted Chebyshev centers for F
with respect to G or best approximations to the elements of F simultaneously.
The methods of the paper by Rozema and Smith [I I] apply in a straight
forward manner.

The techniques we have used can also be applied to the more general
problem of best LI-approximation by splines with restricted ranges of their
derivatives. In the uniform norm, the corresponding polynomial problem
was introduced by Roulier and Taylor [10] and the spline problem was
studied in [7]. We wish to point out the significant differences between uniform
and Lcapproximation by these restricted splines.

Examining the proofs in [10, 7], only the functions which bound the ranges
of the derivatives (other than the zero derivative) need to be assumed to be
differentiable in order to guarantee uniqueness in the uniform norm. In L I ,

the functions which bound the range need to be differentiable as well in order
to carry out the part of Step 5 where it is shown that the constructed ljJ" does
change sign at all isolated tEO T but does not change sign at Xi where Xi ¢c T
and e;,o = I. Thus where we made sure in Step 3 that when ei,O = I and
Xi f: T we had an even sequence, we were using the fact that the bounding
function zero on the range was differentiable. The problem of one-sided
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Lcapproximation of a differentiable function by splines which was studied
by Pinkus [9] is a special case where the given function is also the range
bound.

If there are bounds on the range, then for uniqueness in the uniform norm
to be assured. the assumption is needed that the given function satisfies
these range bounds at least within some E >. 0, where E is strictly less than
the distance from the given function to the set of restricted splines. If this is
not the case, then a single linear functional (a point evaluation) in C"'[a, b]
may be a positive error-extremal and a negative constraint-extremal or vice
in the terminology of [7]. No such assumption is needed ni L1 although the
assumption that the given function is continuous is needed.
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