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A characterization of the best Z,-approximation to a continuous function by
classes of fixed-knot polynomial splines which satisfy generalized convexity
constraints is presented and uniqueness is shown. Included is the possibility of
specifying the positivity, monotonicity, or convexity of the class. The proof of
uniqueness uses recently developed results for Hermite-Birkhoff intecpolation by
splines.

[NTRODUCTION

The concept of monotone approximation by polynomials was introduced
by Shisha [13], and has been further studied by many authors. Lorentz [5]
demonstrated uniqueness, in general, for best approximation by monotone
polynomials in the uniform and L;-norm. Roulier and Taylor [10] generalized
this monotonicity constraint to include more general restrictions on the
range of derivatives. An excellent survey to this and subsequent work
concerning uniform approximation with constraints can be found in Chalmers
and Taylor [3]. If all the restrictions on derivatives are nonnegativity or
nonpositivity, we will call them generalized convexity constraints.

Classes of polynomial splines with fixed knots satisfying generalized
convexity constraints and other inequality-type constraints were introduced
and studied in the author’s thesis [7]. with some of the results appearing
in [8]. Best uniform approximations were characterized and partial uniqueness
was established. This paper continues the study of such constrained splines
by considering the L,-norm. A characterization is given which is a special
case of a more general result found in Rozema and Smith [I1]. Further
uniqueness is established, too.
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Uniqueness for best L ,-approximation by certain unconstrained splines
with fixed knots has previously been demonstrated by Carroll and Braess [2]
and Galkin [4]. Thus we generalize their results by allowing constraints.
Pinkus [9] has considered best one-sided Ll'-approximation by splines to a
differentiable function. We indicate in the last section how the methods of
this paper can be used to handle one-sided approximation as well as more
general restrictions on the range of derivatives. Only the somewhat simpler
case of generalized convexity constraints is presented in detail.

We will use results for Hermite-Birkhoff interpolation by splines which
were developed by the author [7. 8]. For completeness the required theory is
briefly reviewed in the following section together with certain rather technical
interpolation lemmas which are needed.

I. HERMITE-BIRKHOFF [NTERPOLATION BY SPLINES

Suppose — x Za - & < & < < &, < €,y = b -2 x and integers
R, with 0 < R, i m. v ==1,.,q, are given. Let %, = F,2({&.11 1R
denote the space of polynomial spline functions of order /1 with tixed knots
1€19, each with multiplicity R, . respectively, where p - 3. , R.. Thus
ge ¥ s piecewise a polynomial of degree at most m —- | with g dis-
continuous only at a knot &, where j = m — R, . We adopt the convention that
all elements of .#, and all derivatives of elements of .¥,” are defined every-
where by assuming continuity from the right. Notice that dim /" -m — p.

We review needed facts about Hermite-Birkhoff interpolation (HBI) by
polynomial splines.

Let interpolation points

X =da s{xy <Xy < o < Xy <L b (1.1)
be given. A matrix

E = {e;], i=1,..k; j=0,1,..,m-—1 (1.2)
is called a spline incidence matrix for X and ., provided e;; - 0. - 1. or 2
and e;; = —1 or 2 only if x; = £, for some v and j >> m — R, . The HBI

problem defined by (£, X, ¥, is:
Given any values{y,;:e;; = 1 or 2} and {y;;:¢;; == —1 or 2}, find g = ¥/, with
gi(x,) = vy, whenever e; = lor2, (1.3)
gNx;) = v, whenever e; = —1or2. (1.4)

As in [7, 8], when we display such a matrix E, we indicate the relationship
between the interpolation points X and the knots of the spline space ¥,* by
drawing the following lines:
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() If x; <§ < x,;, we draw a solid line between the ith and
(i -~ Dth rows extending from the (m — R,)th column to the (m — I)th
column. If more than one knot lies between x;and x,_,,then draw several lines.

(1) If x; = &, , we enclose in a box the entries in the ith row from the
(m — R)th column to the (m — 1)th column.

Thus an entry of £ may be —1 or 2 only if it is boxed.
Define

iE:.:Zieij . (1.5)

We say (£, X, %,®) is full when ; EV\ = dim ¥, =m — p. If (E, X, %)
has a unique solution for any given data values or, equivalently, if the only
solution to the homogeneous problem is the zero spline, the problem is called
poised. Obviously (E, X, &,®) must be full for this to happen. When || E" <
m -~ p, we say (E, X, &™) is quasi-poised if the dimension of the solution
space for the homogeneous problem is exactly m + p — | E .

We now define what are essentially submatrices of E. For n = 0, I,....
m—land0 </ <s < g+ 1,letk; = min{i: & < x;}, k, = max{i: x; < £,},
and

E(n: 1, s) = {ef;}, I =ky,..ky; j=mn..,m—1, (1.6)
where
el =1, if i=k ,x;=¢ ,ande; =1o0r2,
= g, . if x;e(§,€)orifi=ky,,x;=¢& ,andj <m— R,,
=1, if i=ky,x;,=& ,ande; = —1or2,
=0, otherwise. (1.7)

By a simple dimension argument, it is easy to see that the following, called
the local Polya conditions (LPC) for (E, X, ¥,™), are necessary for quasi-
poisedness:

cE(n:ls), <m—n -+ p(n:l,s), forall n=20,1,..m—1; (1.8)
0 </l <s<qg—1,
where
s—1

p(n:l,s) = Y min[R,, m — ], if {—1 <s,

v=1+1

0, T (1.9)

It is also easily verified that all of the LPC are satisfied if we have that

VEm: 1 s)f <m—n—+ pn:ls),
forall {(n,/,s): R, <m — n, when! << v <s!. (1.10)
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In particular when (£, X, -7,"} s full, the LPC imply that

I
=Y Rl (.1

L -

“E - EO:Lg -1

—

LevMma LI If EO: L) - m - pl0: 1, 5) for some Q << - v ¢ -1
or 0 < <<s <q - 1. then (E, X..%,") can be split vertically into two or
three HBI problems. each defined on a spline space of order still m but with
Sewer knots than £,. The “central” one of the decomposed problems has
incidence matrix E(0: 1. 5).

LEMMA 1.2. If x; = &, for some i{ and v, and e;, =1 for all j = 0, 1.....
m— R, — 1, or if R, = m for some v, then (E, X, %) can also be split
vertically into two HBI problems considering fewer knots. E(0:0,v) and
EQ©: v, g - 1) will be the incidence matrices for these two smaller
problems.

We further note that the above decompositions preserve the LPC and that
if the original problem has a full matrix, then so do all of the smaller problems.
Quasi-poisedness of (£. X, .%,”) is equivalent to quasi-poisedness of all of
the split problems. Similar decompositions have been noted by several
authors. see [6]. for example. The complete details are tedious but not hard
and can be found in [7].

Let (E. X. /") indicate a given HBI problem. If x, €:£.15 . then we say
that we have a regular sequence beginning with ¢;, of order x when ¢,. =
e, ;. = =e¢, .4 =1lwithe,; ; = 0ande;; ., = 0if either is defined.
Also if x; = £, , then we say that we have a regular sequence beginning with
e;of order wwhene;; = e, , | = - =¢,;_ = Ilwithj —u m - R.
e.,.1 =0 and ¢, ., -= 0 if either is defined. Further a regular sequence
€; 5. €, i, 1 is called strongly regular if e, ;., is defined, zero. and. in the
case where v; = & ./ — p <. m — R, . A sequence is eren if it has even order
and odd otherwise.

We say that a regular sequence ¢,, ..... ¢, ;_,_y is supported provided there
exist integers ¢y, /1. [y jy With iy <07 <Tiy, e, = lor2
fucominfjm — Rex, <& - (1.12)
Jo < minfj dm — Ryrx; < €, < xy il (1.13)
and
Cipry — | if xg, ¢4
=1, if v, =& and j, -Zm — R (1.14)
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The problem (E, X, %) is called weakly consercative (C) if every supported
strongly regular sequence is even.

THEOREM 1.1. Suppose (E, X, %) satisfies the LPC and C. Then it is
quasi-poised.

This theorem generalizes the sufficiency theorem of Atkinson and Sharma
for HBI by polynomials [1]. The proof can be found in [7, 8].

We shall need the following technical lemmas. All three lemmas concern
attempts to add conditions of some sort to a given HBI problem.

LemMa 1.3, Suppose (E, X, ) satisfies the LPC but when some strongly
regular sequence in E is extended to have an additional one to the right giving
the matrix E, then the LPC are violated. There exists £ & {£,)% U X so that when
& is added as a simple knot to the spline space, then (E, X, ™ ({€3%, &
{R}1, 1)) satisfies the LPC.

Proof. Supposee;;_ , = - = e; ;. = | is the strongly regular sequence
of E and that e;; is changed from a zero to a one to obtain E. Then there
exists p <jand 0 </ <5 < g - 1with x, € [¢,, €] so that for #,",

VEMm:ils) =" E(m:ls) 1
:m—*q«p(’r]:[.s) - 1. (115)

Without loss of generality assume that (1.15) cannot happen first for any
7 > 7 and secondly with 7 for any [ and § with [&;, €] C [£,, £.].
Let

€ — n]in[(xi - xz'—l)s (xiJrl - 'Yz)a {! X, — ‘fr - g-,- = xi}]' (ll6)

We choose & € (x, — €, X; — €).ix;} in such a way that when ¢ is added to the
knot set, i.c., {E8 = {£)2 U i€l properly ordered, € = ¢;, Ry = 1, and
! <l < s+~ 1, wehave

VEGp: 1.1y < E(: s — 1), (1.17)
and
E@:Ls + 1y < Eemils— 1), (1.18)

with respect to L0 ({ENEL RN,

It is easily seen that this can be done. The proof is completed by checking
the various ways E might violate the LPC with respect to the new spline space.
If this happens, then (E, X, %,™) must violate the LPC, contrary to hypothesis.

A condition corresponding to e; , = 1 is called a Lagrange condition and
we say that we are adding a Lagrange condition at ¢ to an HBI problem
(E, X, %) if a zero in the j = 0 column is changed to a one, possibly by
adding a new row to E if t € X.
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LEvivA 1.4, Suppose (E. X. ) satisfies the LPC but is not full. Then
there exists a point t € X' U |£.01 . where a Lagrange condition can be added to
(E. X. /) without riolating the LPC.

Proof. If EQ:1s) —m--p0:/Ls) for some 0 <</ <25 -Tqg—1or
0 «. /< s < q— L. then we can decompose according to Lemma 1.1 and
consider one of the split problems which is not full. Thus without loss of
generality we assume this never happens. But then any Lagrange condition
can be added without violating the LPC.

LemMMA 1.5, Assume that (E. X, ") satisfies the LPC but is not full.
Without loss of generality, assume that [\€,)3 U b1 C X, possibly by having

some rows with all zero entries in E. Then we can “fill” E in such a way that the
LPC remain valid by

(i) changing some ““boxed™ zeros to minus ones,
(ii) changing some *“‘boxed™ ones to twos, andior
(ill) changing some zeros to ones in the last row corresponding to b.

Proof. Inductively for / = 1. 2..... ¢ we make changes of type (i) or (ii)
for “‘boxed™ entries corresponding to the interpolation point and knot &, so
that (1.11) will be valid for that integer after the changes are made. Further
we make changes one at a time for entries with j-index as large as possible
without violating the LPC. To show that this is always possible. suppose
we have done this for / = 1. 2,.... /. — 1 (if any) and have

E — EO:lg- 1) ) R. [ = 1.2 — 1. (119

Suppose x;, = &, . If

E — EO:/..¢q—1) ) R, (1.20)
=1
then:there is no need to make any changes in the i ,throw. Iif ¢, , - —1 or2
forallj =m— R, ... m — 1. then (1.20) holds. Suppose
e, = 0orl. where m— Ry, . j.. (1.21)
€, = —lor2 forall j = (m — R,),...,j. — | (if any). (1.22)

but ¢;, ;, cannot be changed to —1 or 2. respectively, without violating the
LPC. By (1.10), there exist integers 7, [, and § with [ </, <§ 5 < /..
R, << m — 7 forfall I < v < s (if any), and

E@:1,8), = m — 5 + p(7: L3). (1.23)
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Then
WEN— 'E©: 1. .q + 1)

Z(E —0EQ©:Lg— )+ EG: L9

_ CE@ L )i L <S8 | o
{max[0, m — R,. — 7. if [.. = §} max[0, 3 — m — R,,]

1
> Y R,. (1.24)
p=1

Again (1.20) holds. Thus we can always accomplish the induction step.

If the matrix is still not full after all of these changes, then we make
changes of type (iii) at entries with j-index as large as possible without
violating the LPC. We argue in a similar manner that if it is not possible to
change some such entry, then it is unnecessary to do so.

EXAMPLE 1.1
00 0 0[0])
0 0[0 2 1]
E=]|0 0{0 0 O
1 00 1 0
LOOOOO

becomes via the procedure given for Lemma 1.5

(0 o o o [=0])
0 o[-t 2 2]

E=]0 o= 0 O0]].
I 0o 0 1 ©
o ! oo 1

The display E is quasipoised and £ is poised by Theorem [.1.

2. BEST L,-APPROXIMATION BY SPLINES WITH GENERALIZED CONVEXITY

CONSTRAINTS
Let integers O < ky < k; < - <k, <<m—1 and €. = =1. vt =0,
1,..., w be given. Suppose ¥, C Cla, bl,i.e., R, < m,v = |.....gandm > 1.

64028 '4-4
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Define
G ={hed) e ™)y Coa 1 bor=0,1.,u. (21

Recall we assume right continuity of all spline derivatives. Also for every
g€ G we have

e g NE) 0 if k. m— R, (2.2)

For an integrable function A, let h | = fZ - h(t). dt. Suppose f is in
Cla, b], the space of continuous functions defined on [a, b], but is not in G.
Then a best L;-approximation to f from G is a spline g.. € G such that

lgo —f =il g —f. (2.3)

Denote by P.(f) the collection of all such best approximations. P{f) =
because G is closed, convex, and finite dimensional. We have the following
characterization theorem.

THEOREM 2.1.  Assume f< Cla, b] and G is defined as in (2.1). Then there
exist
(i) functions ¢y ,..., ¢oo 12| where qd{t) == 1 for almost cvery
tefa, bl,i = 1. I,
(i) an HBI problem (E.X..£))., E, --r ~m—p— 1, where
¢,; = Qonly if j = k., for some r.

(iii) positive scalars A, ..., A, . and

(iv) secalars |, and {p;; for i = 1. kandj — 0, 1,..., m — 1. where
w; =0ife;, = VLor2and uj; = 0 if e;; = —1 or 2 and where sgn pu;; =
sgn u;; = —sgne, ifj =k, with

! - h
YN | @)y dt =Y pihx)
=1 ta

— Y pgh(x,) =0, forall ey (2.4)

such that g € G is in P(f) if and only if

[ e0le) —fldi = g—flh, i=lo,r (@25

g¥(xy) =0, whenerver e; = 1 or?2, (2.6)

and
gl(x,0) =0, whenever e. = —1or2. (2.7)
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Proof. This theorem is a special case of a theorem of Rozema and Smith
[11, Theorem 4.1] once we note that it is easy to find a polynomial € .%,™
satisfying

& () >0, a<r<b;, r=01..,w (2.8)

LemMma 2.1. If fe Cla, bl, g, and g, are elements of P¢(f), and g, =
Mg + g»), then g, — g, vanishes at the zeros of g, — f.

This well-known lemma can be found in [2] and is a special case of
[11, Lemma 6.1]. In particular, Theorem 2.1 and Lemma 2.1 characterize
best L,-approximation by continuous unconstrained splines with fixed knots,
i.e., when G = ™. In order to make the proof of Theorem 2.3 below more
transparent, we use the same technique to prove uniqueness in the un-
constrained case. This proof is quite different from those in [2, 4] where a
similar result is established.

THEOREM 2.2. For every fe Cla, b, there is a unique best L,-approxi-
mation from &£, the linear space of polynomial splines with fixed knots &,
each with multiplicities R, , v == 1,..., q. respectively, where zle R, = p.

Proof. Existence follows from standard arguments since %,™ is closed.,
convex, and finite dimensional. We enumerate the steps in the proof of
uniqueness for easy reference and comparison in the subsequent proof.

Step 1. Let ¢ ,..., ¢, and A, ...., A, be as guaranteed by Theorem 2.1.
No HBI problem and no scalars {u,;} and {u;;} are needed because there are
no constraints.

Step 2. Suppose g, and g, are both best L,-approximations to f from
. Then so is g, = (g, — g.). Considering (2.5) for g, . we see that for
almost every t with gy(r) == f(¢) we must have

gi(t) = sgnlgt) — f(O], i=T..r (2.9)
Let @ be the right continuous function defined by

D(t) = ]eivrgl sgn [go(r + ) — f(t + €)]. (2.10)
Define 7 to be the closure of the set of all points where @ is either zero or

changes sign. Thus go(t) = f(¢) for every ¢ € T (and possibly at other isolated
points where g, — f does not change sign).

Step 3. Do nothing here since there are no constraints.
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Step 4. Choosc a maximal subset [t -2 1, = -+ <2 ¢t} from T with the
property that Lagrange interpolation at these points is quasi-poised. This
property is equivalent to asking that point evaluations at these points be
linearly independent functionals in the dual of ¢ or that some extension
of this set satisfies the Schoenberg-Whitney interlacing condition. Let
(E;.X,.7.) denote this Lagrange interpolation problem.

Step 5. We claim that x = £, = m - p. If not, then there exists a
point ¢ . € [a, b] which is not one of the points ¢, ..... t, nor one of the knots
&1 ... &, with the property that a Lagrange condition at ¢, may be added
to (£, . X, . ¥, and the resulting interpolation problem is still quasi-poised.
This is a simple application of Lemma 1.4. This point ¢.. cannot be from 7
because ¢, ..... r, was a maximal subset of T with this property. Let
(Ey, Xs. ") denote (E;. X;. Y, with this Lagrange condition at 7.
added.

Now we use (£,. Y,..9,") to construct a spline . € .#,” having sign
structure similar to @ and contradicting (2.4). If x — 1 - m - p. this can
be done immediately. When a + | < m - p, the typical technique in spline
proofs of this type would be to construct .. with lower knot multiplicities
or fewer knots (possibly even no knots at all if v — 1 -7 m). Since this
technique does not generalize easily to the constrained case. we use the
following alternative.

Without loss of generality. assume that the points ¢, ..... ¢,. and b are
included in the set of nodes Y, . possibly by introducing zero rows in the
incidence matrix E,. Inductively for / = 1.2.....q. make the following
changes in the incidence matrix. If x;, = &, and

(XN 2
S e =Y R—m. (2.1
i=1 ;=0 r=1

where n >0, change ¢;, ., - €,.m_n-1..... and e, ,, , from zero to minus one.
If -0, make no changes and continue to the next integer /. After these
inductive changes have been made, if

-

18 1
YY e, —m-—p—n. (2.12)
i=1 y=0

with > 0, where v, = b, change e, ,, . ¢4.;40 - ..... and ¢, ,, | from zero
to one. This procedure is exactly the one described in Lemma 1.5 where the
proof is given that it is always possible to do so. Denote the resulting full
HBI problem thus defined by (E.X. %,”). This problem is poised by
Theorem I[.1.



CONSTRAINED APPROXIMATION BY SPLINES 343

There exists a unique ¢, € %, with

S[’x(t*) - ®([*) # 0,
lﬁ(j)(.?,-) =0, whenever é;=1lor2and X; # t.., (2.13)

$(X-) = 0.  whenever &, = —lor2.

Note that the changes made by using Lemma 1.5 above effectively lowered
the degree of 4, on some knot intervals. (2.13) explicitly requires that
folt,)=0"fori=I,.. x Ifte Tt ,.., 1), then the reason ¢ could not be
added originally to {f, ,.... t,} must be that ¢ is in some [£, . £,] where equality
occurred in the local Polya condition indexed by (0: /, s) for (£, . Xy, ™),
hence for (E,X..%,”). Further since E, is already “full” on [£,, &,] then
r.¢[& . £) Decomposing (E,X, #,) using Lemma 1.1 yields a split
poised problem on [£,, £,] with only zero data values from (2.13). Thus ..
is identically zero on [¢;, é.] and . (t) =Oforall i< T.

Similarly, if E(0:/,s)j =m — p(0:/,s) for some 0 </ <s <q—1
where 7. ¢ [, £,], then the problem decomposes according to Lemma 1.1.
Examining the part of (2.13) which each split problem must satisfy. we
conclude that .(r) = 0 for all tefa, £] if &, < 1, or ,(t) =0 for all
e, b)if 1, < & . If ;=& =1t. and &; =1 for all j =0, 1,...,
m — R, — |, then (E, X, %,”) can be decomposed according to Lemma [.2.
As above, the split problem not involving 7, will be homogeneous so that ..
will be identically zero either for all # < X, or for all r > X;, but not both.

Suppose .(t) = 0 for all t < [f,o, fso]. For some 0 </, <5y < g+ 1.
t.¢[é, . &) Let (EX X, &) denote (E,X,¥,m) with the Lagrange
condition at 7, deleted. Let ¢, be any point from (§, , fgu) but not in X.
A Lagrange condition at ¢, cannot be added to (E*, X, ,™) without violating
the LPC. If it could be, it would give a full poised HBI problem for which
the nontrivial . satisfies all zero data values, which is impossible. Thus
there exist integers 0 </ < s s<C g - | with & {1y <C €, 1. 2], €] and
VEX0: L sy = m + p(0: 1, 5), hence ; E(0: [.5)] = m — p(0: [, s). As before.
.. 1s identically zero either on [a, f,\.o] if §., < 14 o0ron [&,,b]if 1. < 5,,0.

We conclude that .. must be identically zero except on some knot interval
[&, . €..] containing t, (possibly [a, b]). On this interval there are only a
finite number of points from T (all of which are included in X) and only a
finite number of points where . is zero. Any sequence of E beginning with
., for which ¢, < X; < &, and X; = . is strongly regular. Further, if
0=/7-<s<q-—land(§.6)N (6L, L) = =,

PEXO: L s) < m = p(0: 1, s). (2.14)

Suppose i, changes sign at some t, € (§;. , £,.), where @ does not change
sign. First ¢, == 1, because i, is continuous and .(¢,) = 0. Further t, & T
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because. at the isolated points from 7 in (&, . £..). the right continucus
function @ must change sign. By construction, if &, , = I, then either ¥, = T
or X, — b. Thus a Lagrange condition at #, can be added io (E*. X, /).
giving a HBI problem which will be full and poised by Theorem I.1 and
(2.14) together with the properties of (E*. X, %), But the nontrivial .
satisfies this problem with all zero data values. which is impossible. Thus .
cannot change sign when @ does not.

The right continuous function @ changes sign exactly at the isolated points
from 7 which lie in (&, . £,,). Any such point x; & T (§,., £,,) belongs to X,

and the corresponding entry ¢;,, — 1 so that #.(x,) = 0. Suppose that i,
does not change sign at this x, . By construction, ¢; , begins an odd sequence
| =¢,, ¢4 = " =¢,,.wheree, ,; = 0and is not “boxed.” . must

have an even zero at x, so as to not change sign so that 4~ !(v,) = 0.
Changing ¢, ,,_, from zero to one in (E*, X, %) gives a HBI problem which
will be full and poised by Theorem 1.1 and (2.14). Again the nontrivial .
satisfies this homogeneous problem giving a contradiction.

We conclude that sgn .(¢) = D(¢) at all points ¢+ where (1) = 0.
Therefore

b b

[ gdt) bdt)dr = | | dlt)idt >0, Q= 1,..r (2.15)
This with (2.13) shows that .. is a spline from .#,* which contradicts (2.4).
Thus our claim at the beginning of Step 5 must be true.

Step 6. Then (E;, X, ¥,/) is a poised HBI problem. By the con-
struction of T in Step 2 and Lemma 2.1, g, — g, vanishes at every e 7,
hence g, — g, satisfies all zero data for (£, , X7, -%,™). Thus by the uniqueness
of poised HBI, g, = g, . Since g, and g, were two arbitrary best approxi-
mations, the proof of uniqueness is now complete.

We now turn to best L;-approximation from G, the set of splines satisfying
certain generalized convexity constraints. Only significant differences between
the proof that follows and the previous unconstrained proof will be explained
in great detail.

THEOREM 2.3. For every f € Cla, b, there is a unique best L\-approximation
JSrom G defined as in (2.1).

Proof. Existence again follows from standard arguments.

Step 1. Let ¢, ¢\ Ay ey Ay (B, X, ), {1}, and {uj;) be as
guaranteed by Theorem 2.1. Without loss of generality we may assume that
(E, X, %,™) is quasi-poised because any dependency in these conditions could
be used to accomplish (2.4), (2.6), and (2.7) with a smaller HBI problem
made up of independent conditions.
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Step 2. This step is exactly the same as in the proof of the previous
Theorem. Namely, if g, and g, are both in P¢(f), then so is g, = (g, + £2)-
@ and T are defined as before.

Step 3. Suppose ge Ps(f). If e;; =1, then j = k, for some ¢ and
g9(x;) = 0 by (2.6). By the definition of G in (2.1), g’ does not change sign.
Using the zero counting procedure for splines devised by Schumaker [12]
(see also [7, 8]), this must mean that x; is in some interval (possibly the point
alone) where g is identically zero and that this interval is either an even
zero for g'9 or it contains one of the endpoints a or b. Thus if a < x; < b,
Jj<<m—1,e; = l,and e; ; ; is not “boxed,” i.e., no spline in %, may have
a discontinuity in its (j + 1)-derivative at x, , then

gui(x;) = 0. (2.16)

One by one, change “unboxed” zeros to ones in E to assure that there are
no odd strongly regular sequences in rows for which ¢ < x; < b and, if
the sequence begins with e; = 1, for which x; ¢ 7. If x,e T and ¢, = 1,
we leave the order one sequence odd. By (2.16), any g € P;(f) will be zero
for any such added condition. If it is necessary to preserve the LPC, a simple
knot, not already an interpolation point in X, is added to the spline space as
described in Lemma 1.3 when a change is made in E.

Let (E, X, %5 denote the resulting HBI problem, which will be quasi-
poised by Theorem 1.1, where &, C %;" and p < p because of the possible
addition of simple knots. Now (2.4) may not hold for the space #;™. However,
it can be shown using elementary linear algebra that the linear dependencies
of conditions requiring the addition of simple knots (i.e., the violation of
the LPC) together with (2.4) imply that there exist scalars {g;;} and {g;;]
having no particular sign convention, with &;; = 0 if é;, = 1 or 2 and
Az = 0if é; == —1 or 2, such that

Ai fb P) Y1) dt - Z fap P(x;)

+ Z pp(x,) =0 forall eI (2.17)
.}

i=1

For any g € P(f) C &, C %™ (in particular for g, and g,) and j > 0,

gix) =0 whenever é&; = lor?2, (2.18)
and

g9x,.) =0 whenever é. = —1or2. (2.19)

7]

Step 4. Choose a maximal subset {f, <t, < - <t} from
T\{x;: &, = 1} with the property that Lagrange interpolation conditions at
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1\ s 1, can be added to (E. X, /;7) giving (£, . .\, . 75") without violating
the LPC. This new (£, . X7 . .¥};") still satisties C because (E. X. <37 did by
construction in Step 3. so by Theorem [.1 both will be quasi-poised.

Step 5. We claim that - £, - m - p. If not, then we arrive at a
contradiction by constructing . € ™ which violates (2.17) in a manner
almost identical to the way an element of ./} was constructed in the corre-
sponding step of the previous proof which violated (2.4). One slight difference
is that the application of Lemma 1.5 will be somewhat more complicated than
(2.11) and (2.12) because E, may now have nonzero entries in the j = 0
columns. The conclusion is the same after the application, however.

Also the examination of the sign-changing properties may be somewhat
more complicated but the conclusion will remain valid because of the
construction of E in Step 3.

Step 6. Then (£,,X,.%5") is a poised HBI problem for which
g, — & satisfies zero data by (2.18). (2.19), and Lemma 2.1 together with the
fact that for every t< T. gyt) = f(z). Thus g, = g, and the proof of the
theorem is complete.

3. MoxoToNICITY AND CONVEXITY

Definition (2.1) for G in the previous section is a natural generalization
to splines of the notion of monotone polynomials introduced by Shisha [13]
(see also [5]). Included is the possibility for requiring nonnegativity or non-
positivity by choosing &, = 0. Since we made the assumption that all of the
elements of our spline space ., were continuous, choosing some k, = 1|
requires the usual monotonicities. either nondecreasing or nonincreasing.

If R. < m—1,r =1...¢. then some k. = 2 implies that all of the
elements of G are either convex or concave. However it is reasonable to ask
for convexity or concavity even if some of the knots have multiplicity m — 1.
Convexity is well defined (although not n terms of the second derivative)
for linear splines. i.e.. continuous piecewise linear functions, for example.
Similarly monotonicity is well defined for discontinuous splines.

We briefly indicate how the preceding section would need to be modified
to include the requirement of convexity when R, = m - 1 for some of
v = l.... ¢. We ask that

2ty 0. a< tob. (3.1)
and

SOEL) — V() = 0 whenever R.=m— 1. 3.2)
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The conditions in (3.2) are also linear constraints on -%,”. It is not difficult
to show that there exists a spline in .%," which satisfies all of the constraints
including these strictly so that the theorem of Rozema and Smith
[11. Theorem 4.1] applies.

If none of the constraints of type (3.2) are chosen by the theorem of
Rozema and Smith, then we proceed exactly as in the previous section.
On the other hand if one of these *‘jump’ constraints is active and is chosen,
that implies that for g € Ps(f),

gM(E) = gW(E ), (3.3)

i.e., the knot &, is really only of multiplicity w2 — 2 for all splines in Pg(f). Itis
easy to show that Pq(f) CPGny:',(f). where %] is %, with the knots
chosen in (3.3) having multiplicity only m — 2 so that p* << p. In fact the
above inclusion is an equality and P~g7(f) can be characterized using the
arguments of the previous section. In particular we can still conclude that
uniqueness holds.

4. FURTHER EXTENSIONS

With only minor modifications the work of this paper can be extended to
the problem of finding a best global L;-approximation to a compact (in
L,[a, b]) set of continuous functions F from G as defined in (2.1). Such best
global approximations are also called restricted Chebyshev centers for F
with respect to G or best approximations to the elements of F simultaneously.
The methods of the paper by Rozema and Smith [11] apply in a straight-
forward manner.

The techniques we have used can also be applied to the more general
problem of best L;-approximation by splines with restricted ranges of their
derivatives. In the uniform norm, the corresponding polynomial problem
was introduced by Roulier and Taylor [10] and the spline problem was
studied in [7]. We wish to point out the significant differences between uniform
and L,-approximation by these restricted splines.

Examining the proofs in [10, 7], only the functions which bound the ranges
of the derivatives (other than the zero derivative) need to be assumed to be
differentiable in order to guarantee uniqueness in the uniform norm. In L, ,
the functions which bound the range need to be differentiable as well in order
to carry out the part of Step 5 where it is shown that the constructed 4, does
change sign at all isolated f € 7 but does not change sign at x; where x; & T
and e;, = 1. Thus where we made sure in Step 3 that when e;, = 1 and
x; ¢ T we had an even sequence, we were using the fact that the bounding
function zero on the range was differentiable. The problem of one-sided
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L,-approximation of a differentiable function by splines which was studied
by Pinkus [9] is a special case where the given function is also the range
bound.

If there are bounds on the range, then for uniqueness in the uniform norm
to be assured. the assumption is needed that the given function satisfies
these range bounds at least within some € > 0, where e is strictly less than
the distance from the given function to the set of restricted splines. If this is
not the case, then a single linear functional (a point evaluation) in C*[a, b]
may be a positive error-extremal and a negative constraint-extremal or vice
in the terminology of [7]. No such assumption is needed ni L, although the
assumption that the given function is continuous is needed.
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